APPENDIX II EDUCATIONAL STANDARDS

ALASKA STATE SCIENCE STANDARDS

Science as Inquiry and Process

- **SC2** Students develop an understanding of the structure, function, behavior, development, life cycles, and diversity of living organisms.
- **SC3.2** The student demonstrates an understanding that all organisms are linked to each other and their physical environments through the transfer and transformation of matter and energy by analyzing the potential impacts of changes within an ecosystem.
- **SE1** Students develop an understanding of how scientific knowledge and technology are used in making decisions about issues, innovations, and responses to problems and everyday events.

ALASKA STATE SCIENCE STANDARDS

Statistics and Probability Standards

• Interpreting Categorical and Quantitative Data

NEXT GENERATION SCIENCE STANDARDS: DISCIPLINARY CORE IDEAS

LS2.A: Interdependent Relationships in Ecosystems

- Organisms, and populations of organisms, are dependent on their environmental interactions both with other living things and with nonliving factors. (MS-LS2-1)
- In any ecosystem, organisms and populations with similar requirements for food, water, oxygen, or other resources may compete with each other for limited resources, access to which consequently constrains their growth and reproduction. (MS-LS2-1)
- Growth of organisms and population increases are limited by access to resources. (MS-LS2-1)
- Similarly, predatory interactions may reduce the number of organisms or eliminate whole populations of organisms. Mutually beneficial interactions, in contrast, may become so interdependent that each organism requires the other for survival. Although the species involved in these competitive, predatory, and mutually beneficial interactions vary across ecosystems, the patterns of interactions of organisms with their environments, both living and nonliving, are shared. (MS-LS2-2)

LS2.B: Cycle of Matter and Energy Transfer in Ecosystems

• Food webs are models that demonstrate how matter and energy is transferred between producers, consumers, and decomposers as the three groups interact within an ecosystem. Transfers of matter into and out of the physical environment occur at every level. Decomposers recycle nutrients from dead plant or animal matter back to the soil in terrestrial environments or to the water in aquatic environments. The atoms that make up the organisms in an ecosystem are cycled repeatedly between the living and nonliving parts of the ecosystem. (MS-LS2-3)

LS2.C: Ecosystem Dynamics, Functioning, and Resilience

- Ecosystems are dynamic in nature; their characteristics can vary over time. Disruptions to any physical or biological component of an ecosystem can lead to shifts in all its populations. (MS-LS2-4)
- Biodiversity describes the variety of species found in Earth's terrestrial and oceanic ecosystems. The completeness or integrity of an ecosystem's biodiversity is often used as a measure of its health. (MS-LS2-5)

LS4.D: Biodiversity and Humans

• Changes in biodiversity can influence humans' resources, such as food, energy, and medicines, as well as ecosystem services that humans rely on—for example, water purification and recycling. (secondary to MS-LS2-5)

ETS1.B: Developing Possible Solutions

• There are systematic processes for evaluating solutions with respect to how well they meet the criteria and constraints of a problem. (secondary to MS-LS2-5)